
Numerical comparison of solvers for linear systems

from the discretization of scalar PDEs

Yvan Notay ∗

Service de Métrologie Nucléaire

Université Libre de Bruxelles (C.P. 165/84)

50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium.

email : ynotay@ulb.ac.be

January 23, 2012

1 General setting

All tests were performed on a computer with two Intel XEON L5420 processors at 2.50GHz
and 16Gb RAM memory, running 64 bit Linux OS.

All solvers were called from the Matlab environment (version 7.6.0.324, release R2008a),
the Matlab process being the only computing process running on the machine. However,
all solvers are based on efficient codes written in Fortran or C. When available, we used
the gateway (function callable from the Matlab environment) provided with the package;
otherwise, we proceeded as indicated in the next section.

The timings are those obtained using the Matlab command tic just before calling the
solver and the command toc just after. Times are reported per million of unknowns; i.e.,
letting n be the matrix size, what is plotted for each problem and method is toc∗1e6/n as
a function of n .

For iterative solvers, the zero vector was used as initial approximation, and iterations
were stopped when the relative residual error was below 10−6 . In each case, we checked
that the solution returned to the Matlab environment was indeed within the prescribed
tolerance. Note that since the stopping criterion in ILUPACK is based on different prin-
ciples (backward error estimate), we adjusted for this method the tolerance on a trial and
error basis so as to reach the same accuracy as with other solvers.

∗Supported by the Belgian F.R.S.-FNRS (“Directeur de recherches”)



2 Methods

• AGMG, the aggregation-based algebraic multigrid method described in [7] and fur-
ther enhanced in [5, 8]. We used the public domain implementation [6], version 3.1.2,
using the gateway provided with the package for Linux 64 bit architecture (it was
compiled with Matlab mex based on gcc 4.5.0 and g95 0.92, using BLAS and LA-
PACK provided with Matlab (mwlapack, mwblas)). Default parameters were used,
except that restart was set to 1 in the symmetric positive definite (SPD) cases to
tell the solver that the conjugate gradient method can be used. That is, the calling
sequences were u=agmg(A,b,1) in the SPD cases and u=agmg(A,b) in the other ones.

• AMG(Hyp), the classical AMG method [9] as implemented in the Hypre library [3],
version 2.7.0 (in sequential). This method is also known as Boomer AMG incorporates
several recent enhancements [1]. We used it as a preconditioner for the conjugate
gradient method in the SPD cases and for GMRES in the other ones, using again
the Hypre implementation. Default parameters were used in all cases. Since no
Matlab gateway is provided, we built a simple one similar to the one used for AGMG,
compiling it with the same compilers and options.

• AMG(HSL), the HSL implementation [2] of the classical AMG method as described
in [10]. We used more particularly the hsl mi20 routines, version 1.4.0. No Matlab
gateway is provided, and this package appears more as offering a preconditioner than
a complete solution toolbox, although there are some iterative solvers provided with
the HSL library. Hence we integrated the hsl mi20 routines in the software infras-
tructure of AGMG, just substituting the call for setup and the call for preconditioner
application for those provided by respectively mi20 setup and mi20 precondition (us-
ing default options in all cases). Hence the iterative solvers and the gateway to
Matlab were the same as for AGMG (i.e., the conjugate gradient method in the SPD
cases and GCR(10) in the other ones); we also used the same compilers with same
options.

• ILUPACK, a package implementing an efficient threshold-based ILU preconditioner
and several iterative methods [4]. We used version 2.2 with the gateway provided
with the package for Linux 64 bit architecture. We used default parameters; that is,
[PREC, options]=AMGfactor(A) and [u,options]=AMGsolver(A,PREC,options,b),
with just in between the two calls a correction of options.restol on a case by case basis,
to make the stopping criterion similar to the one used for other iterative solvers.

• Matlab \, the sparse direct solver available as built-in function in Matlab, and which
is actually based on UMFPACK [12]. As indicated above, we used Matlab version
7.6.0.324, release R2008a.

2



3 Test problems

Poisson 2D, FD
Five point finite difference discretization with uniform mesh size of

−∆ u = 1 in Ω = (0, 1)× (0, 1)

with Dirichlet boundary conditions u = 0 everywhere on ∂Ω .

Laplace 2D, FE(p3)
Cubic (p3) finite element discretization with uniform mesh of

−∆ u = 0 in Ω = (0, 1)× (0, 1)

with Neumann boundary conditions ∂u

∂n
= 0 everywhere on ∂Ω ,

except on y = 1 , 0 ≤ x ≤ 1 , where Dirichlet conditions u = x were prescribed.
In this example, 33% of the nonzero offdiagonal entries are positive.

Poisson 2D, L-shaped, FE, Unstructured
Linear finite element discretization of

−∆ u = 1 in Ω = (−1, 1)× (−1,−1)\
(

(0, 1)× (0, 1)
)

with Dirichlet boundary conditions u = r
2

3 sin(2θ
3
) everywhere on ∂Ω , where (r, θ) is

the polar coordinate representation of (x, y) .
The mesh is unstructured with simplex size progressively decreased near the reenter-
ing corner at (0, 0) , in such a way that the mesh size in its neighborhood is about
104 times smaller.

Convection-Diffusion 2D, FD
Five point finite difference discretization (upwind scheme) of

−10−6∆ u + v∇u = 0 in Ω = (0, 1)× (0, 1)

with convective flow given by

v(x , y) =

(

x(1−x)(2 y − 1)
−(2 x− 1)y(1−y)

)

,

and Dirichlet boundary conditions u = 0 everywhere on ∂Ω ,
except on y = 1 , 0 ≤ x ≤ 1 , where u = 1 was prescribed.

Poisson 3D, FD
Seven point finite difference discretization with uniform mesh size of

−∆ u = 1 in Ω = (0, 1)× (0, 1)× (0, 1)

with Dirichlet boundary conditions u = 0 everywhere on ∂Ω .

3



Laplace 3D, FE(p3)
Cubic (p3) finite element discretization with uniform mesh of

−∆ u = 0 in Ω = (0, 1)× (0, 1)× (0, 1)

with Neumann boundary conditions ∂u

∂n
= 0 everywhere on ∂Ω ,

except on z = 1 , 0 ≤ x , y ≤ 1 , where Dirichlet conditions u = xy were prescribed.
In this example, 51% of the nonzero offdiagonal entries are positive.

Poisson 3D, FE, Unstructured
Linear finite element discretization of

−∆ u = 1 in Ω = (−2.5, 2.5)× (−2.5, 2.5)× (−2.5, 2.5)

with Dirichlet boundary conditions u = 1 everywhere on ∂Ω ,
except on x = 0, 1 ; 0 ≤ y, z ≤ 1 , were u = 0 was prescribed.
The mesh is unstructured with simplex size progressively decreased near the surface
of a small sphere of diameter 0.2 at the center of the domain, in such a way that the
mesh size in its neighborhood is about 10 times smaller.

Convection-Diffusion 3D, FD
Seven point finite difference discretization (upwind scheme) of

−10−6∆ u + v∇u = 0 in Ω = (0, 1)× (0, 1)× (0, 1)

with convective flow given by

v(x , y , z) =





2x(1−x)(2 y − 1)z
−(2 x− 1)y(1−y)

−(2x− 1)(2y − 1)z(1− z)





and Dirichlet boundary conditions u = 0 everywhere on ∂Ω ,
except on y = 1 , 0 ≤ x , y ≤ 1 , where u = 1 was prescribed.

4



4 results

Pay attention that both scales are logarithmic.

Poisson 2D, FD Laplace 2D, FE(p3)

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

Poisson 2D, FE, Unstructured Convection-Diffusion 2D, FD

10
5

10
6

10
7

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL): coarsening failure in all cases
ILUPACK
Matlab \

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

Poisson 3D, FD Laplace 3D, FE(p3)

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

10
4

10
5

10
6

10
7

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

5



Poisson 3D, FE, Unstructured Convection-Diffusion 3D, FD

10
4

10
5

10
6

10
7

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

10
4

10
5

10
6

10
7

10
8

3

5

10

20

50

100

200

400

 

 

AGMG
AMG(Hyp)
AMG(HSL)
ILUPACK
Matlab \

Acknowledgments

I thank Artem Napov for the installation of the ILUPACK and Hypre libraries.

References

[1] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver
and preconditioner, Appl. Numer. Math., 41 (2002), pp. 155 – 177.

[2] HSL (2011), a collection of fortran codes for large-scale scientific computation.
http://www.hsl.rl.ac.uk.

[3] Hypre software and documentation. Available online at
http://acts.nersc.gov/hypre/.

[4] ILUPACK software and documentation. Available online at
http://ilupack.tu-bs.de.

[5] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed conver-
gence rate, SIAM J. Sci. Comput., (2012). To appear;
http://homepages.ulb.ac.be/~ynotay.

[6] Y. Notay, AGMG software and documentation. Available online at
http://homepages.ulb.ac.be/~ynotay/AGMG.

[7] Y. Notay, An aggregation-based algebraic multigrid method, Electronic Trans. Numer.
Anal., 37 (2010), pp. 123–146.

[8] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations,
Tech. Rep. GANMN 11–01, Université Libre de Bruxelles, Brussels, Belgium, 2011.
http://homepages.ulb.ac.be/~ynotay.

6

http://www.hsl.rl.ac.uk
http://acts.nersc.gov/hypre/
http://ilupack.tu-bs.de
http://homepages.ulb.ac.be/~ynotay
http://homepages.ulb.ac.be/~ynotay/AGMG
http://homepages.ulb.ac.be/~ynotay


[9] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in Multigrid Methods,
S. F. McCormick, ed., vol. 3 of Frontiers in Applied Mathematics, SIAM, Philadelphia,
PA, 1987, pp. 73–130.

[10] K. Stüben, An introduction to algebraic multigrid, in Trottenberg et al. [11], 2001,
pp. 413–532. Appendix A.

[11] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic
Press, London, 2001.

[12] UMFPACK software and documentation. Available online at
http://www.cise.ufl.edu/research/sparse/umfpack/.

7

http://www.cise.ufl.edu/research/sparse/umfpack/

	General setting
	Methods
	Test problems
	results

