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Abstract

This manual gives an introduction to the use of AGMG. AGMG is available both
as a software library for Fortran or C/C++ programs, and as an Octave/Matlab
function; Julia is also supported. AGMG solves systems of linear equations using the
aggregation-based algebraic multigrid method described in [7] with further improve-
ments from [5] and [8].

The software is expected to be efficient for large systems arising from the dis-
cretization of scalar second order elliptic PDEs. It may, however, be tested on any
problem. It is indeed purely algebraic; that is, no information has to be supplied
besides the system matrix and the right hand side. Note, however that all diagonal
entries of the system matrix should be nonzero.

The Octave/Matlab/Julia versions accept real and complex matrices, whereas the
C/C++/Fortran library is available for double precision and double complex arith-
metic. Several levels of parallelism are provided: multi-threading (multi-core acceler-
ation of sequential programs), MPI-based, or hybrid mode (MPI+multi-threading).
See the web site http://agmg.eu for instructions to obtain a copy of the software
and possible upgrade.
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! COPYRIGHT (c) 2012-2024 Yvan Notay - ULB

!

! ALL USAGE OF AGMG IS SUBJECT TO LICENSE. PLEASE REFER TO THE FILE "LICENSE".

! IF YOU OBTAINED A COPY OF THIS SOFTWARE WITHOUT THIS FILE,

! PLEASE CONTACT info@agmg.eu

!

! In particular, if you have a free academic license:

!

! (1) You must be a member of an educational, academic or research institution.

! The license agreement automatically terminates once you no longer fulfill

! this requirement.

!

! (2) You are obliged to cite AGMG in any publication or report as:

! "Yvan Notay, AGMG software and documentation;

! see http://agmg.eu".

!

! (3) You may not make available to others the software in any form, either

! as source or as a precompiled object.

!

! (4) You may not use AGMG for the benefit of any third party or for any

! commercial purposes. Note that this excludes the use within the

! framework of a contract with an industrial partner.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! DISCLAIMER:

! AGMG is provided on an "AS IS" basis, without any explicit or implied

! WARRANTY; see the file "LICENSE" for more details.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

! If you use AGMG for research, please observe that your work benefits

! our past research efforts that allowed the development of AGMG.

! Hence, even if you do not see it directly, the results obtained thanks

! to the use of AGMG depend on the results in publications [1-3] below,

! where the main algorithms used in AGMG are presented and justified.

! It is then a normal duty to cite these publications (besides citing

! AGMG itself) in any scientific work depending on the usage of AGMG,

! as you would do with any former research result you are using.

!

! [1] Y. Notay, An aggregation-based algebraic multigrid method,

! Electronic Transactions on Numerical Analysis, vol. 37, pp. 123-146, 2010

!

! [2] A. Napov and Y. Notay, An algebraic multigrid method with guaranteed

! convergence rate, SIAM J. Sci. Comput., vol. 34, pp. A1079-A1109, 2012.

!

! [3] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion

! equations, SIAM J. Sci. Comput., vol. 34, pp. A2288-A2316, 2012.
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1 Introduction

The AGMG library for Fortran or C/C++ programs is written in Fortran 90. The
main driver subroutine is AGMG for the sequential & multithread versions, and AGMGPAR

or AGMGPARG for the MPI & hybrid versions. Each driver is available in double precision
(prefix D) and double complex (prefix Z) arithmetic. These subroutines are to be called from
an application program in which are defined the system matrix and the right hand side of
the linear system to be solved. Additional interfaces AGMG8, AGMGPAR8 and AGMGPARG8 are
also provided to be called from application programs that uses by default long (8 bytes/64
bits) integers.

Octave/Matlab functions are also provided; that is, an Octave oct-file (agmg.oct) and a
Matlab m-file (agmg.m) implementing the function agmg, which calls AGMG from the
Octave/Matlab environment. Library files for the use within Julia environment under
GNU/Linux are further supplied. This guide is directed towards the use of the For-
tran/C/C++ library, and basic guide on the Octave and Matlab functions is primarily
obtained by entering help agmg in the Octave/Matlab environment. However, Section 2.1.3
on input arguments and Section 2.3 on output arguments and error flags provide some ad-
ditional details that might interest Octave or Matlab users. These latter should also refer
to Section 2.5 for the description of the verbose output, and to Section 7 for solving singular
systems.

For a sample of performance in sequential and comparison with other solvers, see the paper
[6] and the report [9] (http://agmg.eu/numcompsolv.pdf). For the performance of the
parallel version, see the paper [10].

1.1 How to use this guide

This guide is self contained, but does not describe methods and algorithms used in AGMG,
for which we refer to [7, 5, 8]. On the other hand, this guide is oriented towards the use of
AGMG. Further instructions on how to install the package and run the examples are given
in the accompanying README file.

1.2 Release information

This guide describes AGMG 4.2.x-aca (academic version) and AGMG 4.2.x-pro (profes-
sional version). Several new features are introduced from releases AGMG 3.x.y, see the
“ChangeLog” section of the “Software” page of the website http://agmg.eu.

Backward compatibility is guaranteed with usage based on release not anterior to 3.0.0,
except that for versions 4.1.1 and higher iter is not anymore an output argument: the
maximal number of iterations provided on input is unchanged on output, while the number
of performed iterations may be accessed in other ways, see Sections 2.3.2 and 2.3.3.
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1.3 Installation and external libraries

AGMG does not need to be installed as a library. For the sake of simplicity, source or object
files are provided, which need just to be compiled or linked together with the application
program in which AGMG routines are referenced. See the README file provided with
the package for additional details and example of use.

AGMG requires some subset of MUMPS (http://graal.ens-lyon.fr/MUMPS/). For con-
venience, we provide the needed (public domain) source files (one per arithmetic) together
with AGMG (see the files header for a detailed copyright notice). Hence, MUMPS does
not need to be installed as a library. To avoid mismatch with a standard implementation of
the library, all MUMPS routines provided with AGMG have been renamed. (The prefixes
d , z , have been exchanged for dagmg , zagmg .)

AGMG and provided MUMPS source files have .F90 extension. This means that, when
compiling them, preprocessor has to be invoked prior the Fortran compilation. With most
compiler, this is automatic when the source file has such extension, but this is not the
case, e.g., with old releases of Intel compilers. In such cases, one should make sure that the
preprocessor is invoked by using the appropriate option. Otherwise, one will get at least
warning messages when compiling the source files, and most often fatal error messages;
and if errors are not fatal, the correct execution of the software is not guaranteed.

The preprocessor invocation allows one to switch between code versions by defining macros.
For both AGMG and MUMPS source files, the possible macros are “ EXTERNALBL ” (as-
sociated option: “-D EXTERNALBL ”)1 and “ EXTERNALBL INT8 ” (associated op-
tion: “-D EXTERNALBL INT8 ”). Both replace some internal vector and matrix-vector
operations by calls to external BLAS or LAPACK routines, and require thus linking with
a library that provides them. If “ EXTERNALBL ” is defined the standard BLAS/LA-
PACK interface is used, whereas if “ EXTERNALBL INT8 ” is defined one should link
with versions of BLAS and LAPACK that require long (8 bytes/64 bits) integer as in-
put/output arguments. This can result in improved performance providing that a right
version of BLAS/LAPACK is selected. For instance, linking with multithread versions of
BLAS/LAPACK (which in general is done by default) often results in degraded perfor-
mance because the computation for which AGMG calls these libraries are not intensive
enough, hence the overhead associated with the parallelism is not compensated. This is
a fortiori true for the parallel versions of AGMG, since all AGMG threads often call si-
multaneously these libraries, hence there is no room for additional parallelism. Note that
using or not external BLAS and LAPACK may be decided independently for AGMG and
MUMPS source files (e.g., based on performance tests).

A specific macro should also be defined when compiling the MUMPS source file for complex
arithmetic if one intends to use in a same program both the real and complex versions of
AGMG, see the last item in Section 9.

1The “-” sign in front of the option corresponds to Linux and macos ways of passing options. On
Windows, “/” often replaces “-”, hence the in this specific case the correct option is “/D EXTERNALBL ”.
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1.4 Error handling

Except for the MPI versions, detected fatal errors, including failure in memory allocation,
cause returning to the calling program with the variable status set to a positive number,
while the memory specifically allocated for this aborted call is cleaned. On the other hand,
status is set to zero if everything has gone right, whereas it is set to negative if AGMG
executes correctly but the required tolerance was not reached within the prescribed number
of iterations. The status variable may be checked after return from AGMG by calling an
auxiliary function, or checking the first entry in array argument f, see Sections 2.3.1 and
2.3.3 for details.

In case of crash of AGMG, please check carefully of all input arguments. If errors persist,
feel free to contact support@agmg.eu for further assistance.
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2 Sequential version

2.1 Calling AGMG

For real input matrices, the application program has to call the main driver AGMG as follows
(see Section 9 for complex input matrices).

Fortran Syntax:

call dagmg (n , a , ja , ia , f , x , ijob , iprint , nrest , maxit , tol )

C/C++ Syntax 2:

dagmg_(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ) ;

or
DAGMG(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ) ;

Arguments:

n: INPUT integer
a: INPUT double precision (array/pointer)

ja: INPUT integer (array/pointer)
ia: INPUT integer (array/pointer)
f: IN/OUT double precision (array/pointer)
x: IN/OUT double precision (array/pointer)

ijob: INPUT integer
iprint: INPUT integer
nrest: INPUT integer
maxit: INPUT integer

tol: INPUT double precision

n is the order of the linear system, whose matrix is given in arrays a , ja , ia . The right
hand side must be supplied in array f on input, and the computed solution is returned in
x on output; optionally, x may contain an initial guess on input, see Section 2.1.3.1 below.
f is also used as work space and thus modified on output, where its leading entries are
further filled with information from the solution process, see Section 2.3.3.

How to specify the input matrix in arrays a , ja and ia is described in Section 2.1.2, whereas
the input arguments iprint , nrest , maxit and tol are described in Section 2.1.3.

2AGMG is written in Fortran 90, hence the name to be used when calling from C/C++ depends on
conventions that are compiler and OS dependent. Using dagmg (first option, i.e., adding an underscore to
the Fortran name and staying with lowercase) works with GNU and Intel compilers on Linux and macos.
Using DAGMG (second option, i.e., using capital letters without added underscore) works with Intel compilers
on Windows. Pay also attention that additional libraries may be needed at link stage. For instance, to
properly link when using GNU compilers on Linux: either link with gfortran even if the main is in C, or
link with gcc/g++, but reference gfortran and m libraries through the option “-lgfortran -lm”; to properly
link with Intel compilers on Linux: link with ifort using the option “-nofor-main”.
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Long (8 bytes/64 bits) integer as input argument.
An alternative driver is provided for the case where all the integer arguments are or type
long (8 bytes/64 bits) in the calling program. The calling is as follows.

Fortran Syntax:

call dagmg8 (n , a , ja , ia , f , x , ijob , iprint , nrest , maxit , tol )

C/C++ Syntax :

dagmg8_(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ) ;

or
DAGMG8(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ) ;

2.1.1 Changing internal parameters

Some internal integer parameters can be set to non-default values by calling the following
auxiliary function.

Fortran Syntax:

call dagmg_intparam ("key" , value , instance )

C/C++ Syntax 3:

dagmg_intparamC ("key" , value , instance ) ;

Arguments:

"key": INPUT string
value: INPUT integer

instance: INPUT integer

After a call with first argument set to "key", the internal parameter with name key is
set to value for all subsequent calls to the main AGMG driver; instance is ignored by
default. It is only meaningful in the special several instances mode described in Section 6.
(Outside this mode users are suggested to use the default value 0.)

The list of adjustable internal parameters is as follows.

Parameters for versatile input matrix format (see Section 2.1.2)
COOformat (default:0) , nnzinput (default:0)
CSCformat (default:0)
ZeroBaseIndex (default:0)
SYMstorage (default:0)

Parameters for handling multiple right hand side (see Section 2.2)
NRHS (default:1) , MajOrd (default:0)

3The name is here dagmg intparamC for all compilers and OS because this function is specific to the
C/C++ version and supplied in a separated C source file (dagmg intparamC.c).
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Parameter for controlling multithreading (see Section 3)
nthreads (default:0)

Parameter for controlling the several instances mode (see Section 6)
nthreads (default:0)

Parameter for controlling the handling of singular systems (see Section 7)
MaxCoaKernVect (default:1)

Parameters for tuning by expert users: see Section 8

Note that in the above list we give the name of the internal parameter, but the argument
of the auxiliary function should be a string containing the name. Further, this is case
sensitive. For instance, to set the COOformat parameter to 1, the call should be as follows.

Fortran Syntax:

call dagmg_intparam ("COOformat" , 1 , 0 )

C/C++ Syntax:

dagmg_intparamC ("COOformat" , 1 , 0 ) ;

Using, e.g., "cooformat" or "COOFORMAT" will have no effect besides the printing of a warning
message.

In the remainder of this guide, we exclusively refer to internal parameters by their name,
and one should keep in mind that this name must be surrounded by quotes when calling
the auxiliary function to change the parameter value.

Long (8 bytes/64 bits) integer as input argument.
If the input integers arguments value and instance are of type long (8 bytes/64 bits),
Fortran users should use the alternative function:

call dagmg8_intparam ("key" , value , instance )

No alternative function is provided for C/C++ users, but they can easily edit the declara-
tion in the function dagmg intparamC in the provided source file so as to match the type
of integer used when calling the function (other declarations should not be modified).

2.1.2 Matrix format

The default matrix format is the “Compressed Sparse Row” (CSR) format described, e.g.,
in [12]. However, by setting some internal parameter(s) to non default values, most popular
sparse matrix formats can be used without change in the calling program.

Before describing the formats, note that they all specify the input matrix as a list of nonzero
elements; they only differ by the way the list is organized. Then, when two elements in the
list correspond to the same pair of row and column indices, AGMG works automatically
in assembly mode. That is, the final entry for any pair of row and column is the sum of
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all corresponding entries appearing in the list. In practice, it means that if forming the
system matrix requires an assembly process, much of this can be done inside AGMG.

Default: CSR (Compressed Sparse Row) format
With this format, nonzero matrix entries (numerical values) are stored row-wise in a ,
whereas ja carries the corresponding column indices; entries in ia indicate then where
every row starts. That is, nonzero entries (numerical values) and column indices of row i
are located in a(k) , ja(k) for k = ia(i), . . . ,ia(i+1)-1. ia must have length (at least) n+1,
and ia(n+1) must be defined in such a way that the above rule also works for i = n; that
is, the last valid entry in arrays a and ja must correspond to index k = ia(n+1)-1.
Remark 1: (for C users) the above description matches Fortran convention; in C/C++
programs, ia(i) is accessed as ia[i-1] and ia(n+1) as ia[n]; see further below for using
AGMG with 0-based indexing according to C/C++ conventions.
Remark 2: the format is non-unique; entries in each row may appear in any order.

If COOformat> 0 : COO (Coordinate) format
With this format, nonzero matrix entries (numerical values) are stored in a , whereas ja and
ia carry the corresponding column and row indices, respectively. The number of nonzero
entries to process has to be specified before calling the main driver via the parameter
nnzinput (the threes arrays a , ja and ia must have length at least nnzinput).
Remark 1: AGMG returns to the main program with a fatal error message if COOformat> 0
while nnzinput has not been set to a positive integer.
Remark 2: the format is non-unique; entries may appear in any order.

If CSCformat> 0 and COOformat≤ 0 : CSC (Compressed Sparse Column) format
Here, entries are stored column-wise in a , whereas ja carries the corresponding row in-
dices; entries in ia indicate then where every column starts. That is, the format works
like CSR with row and column indices exchanging their role. As with the CSR format, ia
must have length (at least) n+1, and ia(n+1) must be defined in such a way that the last
valid entry in arrays a and ja corresponds to index k = ia(n+1)-1.
Remark 1: if CSCformat and COOformat are simultaneously positive (which is not recom-
mended), COO format is used (hence CSCformat is not activated), but the input matrix is
transposed; i.e., the role of the arrays ia and ja are interchanged: ia contains the column
indices and ja the row indices; the rationale behind this is that the CSC representation
of a matrix corresponds to the CSR representation of its transpose: from a programming
perspective, shifting from CSR to CSC amounts to matrix transposition.
Remark 2: the format is non-unique; entries in each column may appear in any order.

If ZeroBaseIndex> 0 : Use 0-based indexing (for whatever format)
By default, AGMG uses 1-based indexing; that is, indexing of arrays start at 1 and row
& column indices range from 1 to n. This corresponds to Fortran conventions. By setting
ZeroBaseIndex to positive, 0-based indexing is used instead, according to C/C++ con-
ventions. That is, indices stored in ja range from 0 to n-1 (all formats), as well as the row
indices stored in ia when using the COO format (COOformat> 0) . Further, when using
the CSR or CSC format (COOformat≤ 0), ia is a 0-based pointer; that is, the first entry
in ia has to set to be set to 0 (instead of 1 if ZeroBaseIndex≤ 0) to tell AGMG that the
first valid matrix entry in a and ja is the first one in these arrays.
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If SYMstorage> 0 : The input matrix uses symmetric storage
Whatever the matrix format (CSR, CSC or COO) and the type of indexing, symmetric
matrices may be input using symmetric storage. This is specified by setting SYMstorage

to positive. Then, any offdiagonal entry aij in the input list associated with a, ja and ia

is replicated in position (j, i) , ensuring that aji = aij while avoiding to store both.
According to the remark above about the assembly mode, it means that if, for some
i , j , i ̸= j , aij and aji are both present in the input list, the final entry for the indices
i , j will be aji = aij = aij + aji .

Example

By way of illustration, consider the matrix

A =


10 −2
−1 11 −4 −3

12
−5 13

 .

Examples of valid representations are given below for each format.

CSR format:

a =
[
10.0 −2.0 −1.0 11.0 −4.0 −3.0 12.0 13.0 −5.0

]
ja =

[
1 2 1 2 3 4 3 4 1

]
ia =

[
1 3 7 8 10

]
(Observe that columns indices in the last row are unsorted)

CSR format with ZeroBaseIndex> 0 :

a =
[
10.0 −2.0 −1.0 11.0 −4.0 −3.0 12.0 13.0 −5.0

]
ja =

[
0 1 0 1 2 3 2 3 0

]
ia =

[
0 2 6 7 9

]

CSC format:

a =
[
10.0 −1.0 −5.0 −6.0 11.0 4.0 −4.0 12.0 13.0 −3.0

]
ja =

[
1 2 4 1 2 1 2 3 4 2

]
ia =

[
1 4 7 9 11

]
(Observe that the entry in position (1, 2) illustrates the assembly mode.)
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COO format:
a =

[
4.0 −1.0 −5.0 −6.0 11.0 10.0 −4.0 13.0 12.0 −3.0

]
ja =

[
2 1 1 2 2 1 3 4 3 4

]
ia =

[
1 2 4 1 2 1 2 4 3 2

]
(Observe that the entry in position (1, 2) illustrates the assembly mode.)

Finally, for any combination of input arrays and parameters illustrated above, if SYMstorage
is simultaneously set to positive, the input system matrix will be:

AS =


10 −3 −5
−3 11 −4 −3

−4 12
−5 −3 13

 .

(Observe that AS = A+ AT − diag(A))

2.1.3 Other input arguments: ijob , iprint , nrest , maxit and tol

2.1.3.1 ijob: INPUT, integer

ijob tells AGMG what has to be done. If ijob=0 , AGMG will solve the specified linear
system in the usual way; this implies a setup phase followed by an iterative solution phase
[7]. Other values tell AGMG that an initial approximation is given in x, and/or to separate
setup and solve phase, allowing one to reuse the setup for several solves. It is also possible
to call AGMG for just one application of the multigrid preconditioner (to be exploited in
a more complex fashion by the calling program).

The valid values of ijob are listed in the Table 1.

Remarks

� If ijob is set to an non valid value AGMG returns to the main program with a fatal
error message.

� ijob=2,3,12,102,112,202,212 require that one has previously called AGMG with
ijob=1 or ijob=101; otherwise, AGMG returns to the main program with a fa-
tal error message.

� Standard usage of AGMG is when the system matrix coincides with the matrix used
for setup (thus which served to define the multigrid preconditioner stored in internal
memory). Then, relevant values of ijob are ijob=0 or 10 for solving a single linear
system, or ijob=1 followed by several calls with ijob=202 or 212 when several
systems with the same matrix need to be solved successively.

With ijob=2 or 12 (or 102/112), AGMG allows one to change the system matrix
while keeping the previously built preconditioner. This option is provided for the
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ijob Usage
0 Performs setup + solve + memory release, no initial guess.
10 Performs setup + solve + memory release, initial guess in x.

1 Performs only the setup (f and x are not accessed).
(Preprocessing: prepares all parameters for subsequent solves.)

202 Performs a solve for the system matrix provided during the setup,
using the multigrid preconditioner built during setup; no initial guess.
(a , ja and ia are not accessed.)

212 . . . same as ijob=202 but an initial guess is provided in x.

3 The vector returned in x is not the solution of the linear system,
but the result of the action of the multigrid preconditioner
on the right hand side(s) in f. (a , ja and ia are not accessed.)

2 Performs a solve for the system matrix provided in a , ja and ia ,
using the multigrid preconditioner built during setup; no initial guess.
(The system matrix may differ from the one provided for the setup.)

12 . . . same as ijob=2 but an initial guess is provided in x.

-1 or 99 Erases the setup and releases internal memory.

100,110
101,102,112

}
same as, respectively, 0,10,1,2,12, but uses the transpose
of the input matrix provided in a , ja and ia.
( Not available for MPI and hybrid versions.)

Table 1: Possible values for ijob.

sake of generality and should be used with care. One should not use it if the system
matrix has not changed, as it is less time and memory consuming to call AGMG
with ijob=202 or 212. Observe that then a , ja and ia are not accessed and the
corresponding memory may thus be released in the calling program.

� Using ijob=100,110,101,102,112, AGMG will work with the transpose of the input
matrix. As noted in the previous section, the same effect is obtained by setting
CSCformat to positive, since shifting from CSR format to CSC format amounts
to transposition. When using simultaneously ijob=100,110,101,102 or 112 and
CSCformat> 0 , it further turns out that both specifications cancel each other.

2.1.3.2 iprint: INPUT, integer

iprint is the unit number where information is to be printed (N.B.: 5 is converted to 6).
If nonpositive, only error messages are printed on standard output.

Warning messages about insufficient convergence (in the prescribed maximum number of
iterations) are further suppressed when supplying a negative number; then AGMG works
silently. This is useful, e.g., if one intends to perform solves with a fixed number of iterations
without caring about the achieved residual reduction.
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2.1.3.3 nrest: INPUT, integer

nrest is the restart parameter for GCR [2, 13] (an alternative implementation of GMRES
[12]), which is the default main iteration routine [7]. A nonpositive value is converted to
10 (suggested default).

If nrest=1, Flexible CG is used instead of GCR (when ijob=0,10,2,12,100,110,102,112,
202,212) and also (ijob=0,1,100,101) some simplifications are performed during the setup
based on the assumption that the input matrix is symmetric. Should be used only when
the matrix is symmetric and positive definite.

2.1.3.4 maxit: INPUT, integer

maxit specifies the maximal number of iterations.

2.1.3.5 tol: INPUT, double precision

tol specifies the tolerance on the relative residual norm, used as stopping test. Iterations
are pursued (within the limit prescribed by maxit) until the residual norm is below tol

times the norm of the input right hand side. For a single right hand side, this means
∥f − Ax∥ ≤ tol · ∥f∥ , where f is the right hand side vector stored on input in array f,
where x is the vector stored on output in array x, while A is the system matrix in arrays
a , ja and ia (input at setup or solve time, according to the value of ijob).

See the next section for the precise stopping test in case of several right hand sides.

Note that, as with any linear system solver (including direct solvers), the accuracy that
can be reached is limited by rounding errors. Indeed, roughly speaking, the residual norm
cannot be decreased much beyond u ∥A∥ ∥x∥ , where u is the unit roundoff of the machine.
If the input argument tol requests going beyond this limit, in most cases AGMG will
continue iterations until the criterion is seemingly satisfied; however, accuracy has been
lost when computing the residual and the residual norm reported by AGMG is then not
trustable. Occasionally, AGMG may detect that this maximal accuracy has been reached
and stops iterations regardless the specilfied tolerance. When this happens, the apparent
residual norm may, however, be already significantly lower than the true one, hence the
value reported by AGMG is then not trustable as well.

This potential discrepancy between computed and true residual norms is nevertheless harm-
less because it takes place only when the linear system(s) has/have been solved with max-
imal accuracy (as may be checked by comparing the residual norms with those obtained
using known backward stable direct solvers). Users are, of course, advised to select only
values of the tol parameters that are not excessively small.
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2.2 Solving at once for multiple right hand sides

AGMG may solve at once for several right hand sides. This feature is not only provided for
convenience, but also for performance, as this may be significantly faster than performing
successive solves with ijob=202 or 212. Indeed, while the number of arithmetic operations
will be about the same or slightly larger when solving at once for several right hand sides
compared with successive solves, the memory usage is significantly improved, entailing
faster execution of the code.

To activate this option, the auxiliary function has to be called to set the parameter NRHS to
the number of right hand sides in f. It is also mandatory to set MajOrd to either positive
or negative. (If it is zero while NRHS> 1 , AGMG returns to the calling program with an
error message.) Mathematically, the right hand side argument is then a rectangular matrix
which contains the collection of right hand sides, one per column, and MajOrd tells if the
calling program uses major row or major column ordering. AGMG returns the solution in
x using the same ordering.

MajOrd> 0 indicates that row major ordering is used (ordering for multidimensional arrays
in C). That is, if (fk)j is the jth entry of the kth right hand side, entries in f appear in
order (f1)1 , (f2)1 , . . . , (fNRHS)1 , (f1)2 , . . .

MajOrd< 0 indicates that column major ordering is used (ordering for multidimensional
arrays in Fortran). That is, if (fk)j is the jth entry of the kth right hand side, entries in f

appear in order (f1)1 , (f1)2 , . . . , (f1)n , (f2)1 , . . .

When NRHS> 1 , the used stopping test is:
√∑NRHS

k=1 ∥fk − Axk∥2/∥fk∥2 ≤ tol , where fk is

the kth right hand side and xk the corresponding solution returned in array x . Observe
that the tolerance criterion is then satisfied individually for each pair of right hand side
and solution vector (at the price of possibly slightly oversolving some of the systems).
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2.3 Output arguments and error flags

Two integer output arguments, status and iter, can be accessed via specific auxiliary
functions. Further, if ijob=0,10,2,3,12,202 or 212 (i.e., when the right hand side argument
f is meaningful), some informative output variables are provided in the first entries of f,
including status and iter converted to real values (for user convenience, as the call to
auxiliary functions is then no more needed).

2.3.1 status

This integer variable tells the status of AGMG, containing a possible error flag. A zero
value indicates that the last call to AGMG completes successfully. The variable is accessed
as follows.

Fortran Syntax:

call dagmg_status ( status , instance )

C/C++ Syntax :

dagmg_status_(&status ,&instance ) ;

or
DAGMG_STATUS(&status ,&instance ) ;

Both arguments are of INTEGER type and status is an OUTPUT argument that the
function sets to the corresponding internal variable. As for dagmg intparam, instance is
ignored by default and is only meaningful in the special several instances mode described
in Section 6.

If long (8 bytes/64 bits) integers are used in the calling program, one should use instead:

Fortran Syntax:

call dagmg8_status ( status , instance )

C/C++ Syntax :

dagmg8_status_(&status ,&instance ) ;

or
DAGMG8_STATUS(&status ,&instance ) ;

Possible values of status are listed below. Observe that the value is positive if and only
if a fatal error occurred.
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status Meaning
0 Normal termination – no error
-1 Last AGMG call executed correctly but the stopping test was not

satisfied within the prescribed maximal number of iterations
(the prescribed tolerance has not been reached).

-2 Last AGMG call executed correctly but the stopping test was not
satisfied because AGMG detected that the maximum accuracy has
been reached while the prescribed tolerance is excessively small
(see Section 2.1.3.5).

1 Illegal value of ijob .
2 ijob=2,3,12,102,112,202 or 202 while no setup has been done

or kept in memory.
3 COO format requested but the information on the number of nonzero

entries has not been provided (COOformat> 0 and nnzinput≤ 0).
10 At least one diagonal entry of the input matrix is zero.
11 Failed allocation: not enough memory for setup.
12 Failed allocation: not enough memory for solve.

2.3.2 iter

This integer variable is set to the number of iterations performed during the last call to
AGMG. It is set to 0 if no iteration was performed because of the value of ijob (no iterative
solve is performed if ijob=-1,1,3 or 101). The variable is accessed as follows.

Fortran Syntax:

call dagmg_iter (iter , instance )

C/C++ Syntax :

dagmg_iter_(&iter ,&instance ) ;

or
DAGMG_ITER(&iter ,&instance ) ;

Both arguments are of INTEGER type and iter is an OUTPUT argument that the func-
tion set to the corresponding internal variable. As for dagmg intparam, instance is ig-
nored by default and is only meaningful in the special several instances mode described in
Section 6.

If long (8 bytes/64 bits) integers are used in the calling program, one should use instead:

Fortran Syntax:

call dagmg8_iter (iter , instance )

C/C++ Syntax :

dagmg8_iter_(&iter ,&instance ) ;

or
DAGMG8_ITER(&iter ,&instance ) ;

17



2.3.3 Real output arguments

If ijob=0,2,3,10,12,102,112,202 or 212, that is, if f is a meaningful argument, its first
entry on output is set to status (converted to real value), which is then accessible without
call an auxiliary function. Further, if ijob=0,2,10,12,102,112,202 or 212 (that is, if an
iterative solve has to be performed) and if satus≤ 0 (that is, if no fatal error occurred),
the next entries in f are filled with additional information as indicated in the table below.

In this table, we use the following conventions: A is the system matrix in arrays a , ja
and ia (input at setup or solve time, according to the value of ijob), and, in case of
one right hand side, f is the right hand side vector stored on input in array f and x is
the vector stored on output in array x , while x(j) stands for the obtained approximation
after j iterations. (Thus, x(j) = x for j =iter whereas x(0) is the initial approximation
(that is, the all zero vector if ijob=0,2 or 202, and the vector stored on input in array x if
ijob=10,12 or 212.) For more than one right hand side, fk is the kth right hand side, xk the

corresponding solution returned in array x , and x
(j)
k the related obtained approximation

after j iterations.

Fortran C/C++ Contents if NRHS= 1 Contents if NRHS> 1
f(1) f[0] Real(status) Real(status)
f(2) f[1] Real(iter) Real(iter)

f(3) f[2] ∥f − Ax∥/∥f∥
√(∑NRHS

k=1 ∥fk − Axk∥2/∥fk∥2
)
/NRHS

For j = 0, . . . ,iter :

f(4+j) f[3+j] ∥f − Ax(j)∥
√(∑NRHS

k=1 ∥fk − Ax
(j)
k ∥2/∥fk∥2

)
/NRHS

Remarks

� Entries from the fourth one in f give thus the convergence history. Observe that
(absolute) residual norms are returned in case of one right hand side, whereas the
mean of relative residual norms is returned when NRHS> 1 .

� AGMG assumes that f has size n×NRHS . Hence only the first n×NRHS entries of f can
be output arguments. Therefore, in the (unlikely) event where n×NRHS<(iter+4),
the information returned in f is truncated to the n×NRHS available entries.

� Inside AGMG, f is treated as a one dimensional array regardless the number of right
hand sides, and the returned output values are set accordingly. This should be taken
into account to properly access returned values if f is declared as a multi-dimensional
array in the calling program.
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2.4 Example

The source file of the following example is provided with the package.

Listing 1: source code of sequential Example (Fortran 90)

program example_seq

!
! So l v e s the d i s c r e t e Laplac ian on the un i t square by s imple c a l l to AGMG.
! The r i g h t hand s i d e i s such t ha t the exac t s o l u t i o n i s the vec t o r o f a l l 1 .
!

implicit none

real ( kind (0d0 ) ) , allocatable : : a ( : ) , f ( : ) , x ( : )
integer , allocatable : : ja ( : ) , ia ( : )
integer : : n , maxit , iprint , nhinv , i
real ( kind (0d0 ) ) : : tol

! s e t i n v e r s e o f the mesh s i z e ( f e e l f r e e to change )
nhinv=500

! maximal number o f i t e r a t i o n s
maxit=50

! t o l e r anc e on r e l a t i v e r e s i d u a l norm
tol=1.e=6

! un i t number f o r output messages : 6 => s tandard output
iprint=6

!
! genera te the matrix in r equ i r ed format (CSR)
! f i r s t a l l o c a t e the v e c t o r s wi th co r r e c t s i z e

n=(nhinv=1)**2
allocate (a (5*n ) , ja (5*n ) , ia (n+1) ,f (n ) , x (n ) )

! next c a l l sub rou t ine to s e t e n t r i e s
call uni2d ( nhinv=1,f , a , ja , ia )

!
! c a l l AGMG
! argument 5 ( i j o b ) i s 0 because we want a complete s o l v e
! argument 7 ( nre s t ) i s 1 because we want to use f l e x i b l e CG
! ( the matrix i s symmetric p o s i t i v e d e f i n i t e )

call dagmg (n , a , ja , ia , f , x , 0 , iprint , 1 , maxit , tol )
! d i s p l a y on screen the output i n f o re turned by AGMG in f ( )

print ’()’

print ’("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣AGMG␣status␣:",i5)’ , int (f ( 1 ) )
print ’("Number␣of␣performed␣iterations␣:",i5)’ , int (f ( 2 ) )
print ’("␣␣␣␣␣␣␣␣Relative␣residual␣norm␣:",1pe9.2)’ , f (3 )
print ’("␣␣␣␣␣␣␣␣␣␣␣Convergence␣history␣:␣#iter␣␣␣Residual␣Norm")’

print ’("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣",i5,1pe16.5)’ &
,( i , f(4+i ) , i=0,int (f ( 2 ) ) )

end program example_seq
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The same example is also provided in C language. Observe that here zero based indexing is
used, and AGMG is informed about that via a call to the auxiliary function. This example
also illustrates the use of symmetric storage.
Note the #include <dagmg intparamC.c> needed for calling the auxiliary function.
(Hence the directory where this source file is located should be in the Include PATH.)

Listing 2: source code of sequential Example (C)

#include <stdlib . h>
#include <stdio . h>
#include <dagmg_intparamC . c>
void dagmg_ ( int * , double * , int * , int * , double * , double*

, int * , int * , int * , int * , double * ) ;
void uni2d (int , double * , double * , int * , int * ) ;
int main ( void ) {

/*
So l v e s the d i s c r e t e Laplac ian on the un i t square by s imple c a l l to AGMG.
The r i gh t=hand=s i d e i s such t ha t the exac t s o l u t i o n i s the vec t o r o f a l l 1 .

*/
double *a ,* f ,* x ;
int n ,* ja ,* ia , i ;
int zero=0,one=1;

/* s e t i n v e r s e o f the mesh s i z e ( f e e l f r e e to change ) */
int nhinv=500;

/* maximal number o f i t e r a t i o n s */
int maxit=50;

/* t o l e r anc e on r e l a t i v e r e s i d u a l norm */
double tol=1.e=6;

/* un i t number f o r output messages : 6 => s tandard output */
int iprint=6;

/* genera te the matrix in CSR format us ing symmetric s t o rage */
/* f i r s t a l l o c a t e the v e c t o r s wi th co r r e c t s i z e */

n=(nhinv=1)*(nhinv=1);
ia=malloc ( ( n + 1) * sizeof ( int ) ) ;
ja=malloc (3*n * sizeof ( int ) ) ; /* s e t 5*n i f you remove the */
a=malloc (3*n * sizeof ( double ) ) ; /* SYMstorage opt ion in uni2d */
f=malloc (n * sizeof ( double ) ) ;
x=malloc (n * sizeof ( double ) ) ;

/* next c a l l f unc t i on to s e t e n t r i e s ;
observe t ha t the func t i on d e f i n e s o f f d i a g ona l e n t r i e s
on ly in e i t h e r the upper or the lower par t o f the matrix ,
i . e . , uses symmetric s t r o ra g e f o r the ( symmetric ) system matrix */
uni2d ( nhinv=1,f , a , ja , ia ) ;

/* c a l l a u x i l i a r y func t i on to t e l l AGMG tha t O=based index ing i s used */
dagmg_intparamC ("ZeroBaseIndex" , 1 , 0 ) ;

/* c a l l a u x i l i a r y func t i on to t e l l AGMG tha t symmetric s t r o ra g e i s used */
dagmg_intparamC ("SYMstorage" , 1 , 0 ) ;
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/* c a l l AGMG
argument 5 ( i j o b ) i s 0 because we want a complete s o l v e
argument 7 ( nre s t ) i s 1 because we want to use f l e x i b l e CG

( the matrix i s symmetric p o s i t i v e d e f i n i t e ) */
dagmg_(&n , a , ja , ia , f , x ,&zero ,&iprint ,&one ,&maxit ,&tol ) ;

/* d i s p l a y on screen the output i n f o re turned by AGMG in f [ ] */
printf ("\n" ) ;
printf ("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣AGMG␣status␣:%5i\n" , ( int )f [ 0 ] ) ;
printf ("Number␣of␣performed␣iterations␣:%5i\n" , ( int )f [ 1 ] ) ;
printf ("␣␣␣␣␣␣␣␣Relative␣residual␣norm␣:␣%.2e\n" , f [ 2 ] ) ;
printf ("␣␣␣␣␣␣␣␣␣␣␣Convergence␣history␣:␣#iter␣␣␣Residual␣Norm\n" ) ;
for (i=0;i<=(int ) ( f [ 1 ] ) ; i++){

printf ("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣%5i␣␣␣␣␣%.5e\n" ,i , f [ i+3]) ;}
}

2.5 Printed output

When running the above example (in either language), AGMG prints the following output.

****ENTERING AGMG *************************************************************

**** Number of unknowns: 249001

**** Nonzeros : 1243009 (per row: 4.99)

****SETUP: Coarsening by multiple pairwise aggregation

**** Rmk: Setup performed assuming the matrix symmetric

**** Quality threshold (BlockD): 8.00 ; Strong diag. dom. trs: 1.29

**** Maximal number of passes: 2 ; Target coarsening factor: 4.00

**** Threshold for rows with large pos. offdiag.: 0.45

**** Level: 2

**** Number of variables: 62000 (reduction ratio: 4.02)

**** Nonzeros: 309006 (per row: 5.0; red. ratio: 4.02)

**** Level: 3

**** Number of variables: 15375 (reduction ratio: 4.03)

**** Nonzeros: 76381 (per row: 5.0; red. ratio: 4.05)

**** Level: 4

**** Number of variables: 3721 (reduction ratio: 4.13)

**** Nonzeros: 18361 (per row: 4.9; red. ratio: 4.16)

**** Level: 5

**** Number of variables: 899 (reduction ratio: 4.14)

**** Nonzeros: 4377 (per row: 4.9; red. ratio: 4.19)
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**** Grid complexity: 1.33

**** Operator complexity: 1.33

**** Theoretical Weighted complexity: 1.92 (K-cycle at each level)

**** Effective Weighted complexity: 1.92 (V-cycle enforced where needed)

**** Setup time (Elapsed): 6.40E-02 seconds

****SOLUTION: flexible conjugate gradient iterations (FCG(1))

**** AMG preconditioner with Gauss-Seidel smoothing

**** ( 1 pre- and 1 post- relaxations )

**** Iter= 0 Resid= 0.45E+02 Relat. res.= 0.10E+01

**** Iter= 1 Resid= 0.14E+02 Relat. res.= 0.32E+00

**** Iter= 2 Resid= 0.23E+01 Relat. res.= 0.51E-01

**** Iter= 3 Resid= 0.87E+00 Relat. res.= 0.19E-01

**** Iter= 4 Resid= 0.14E+00 Relat. res.= 0.31E-02

**** Iter= 5 Resid= 0.35E-01 Relat. res.= 0.78E-03

**** Iter= 6 Resid= 0.66E-02 Relat. res.= 0.15E-03

**** Iter= 7 Resid= 0.23E-02 Relat. res.= 0.52E-04

**** Iter= 8 Resid= 0.54E-03 Relat. res.= 0.12E-04

**** Iter= 9 Resid= 0.13E-03 Relat. res.= 0.28E-05

**** Iter= 10 Resid= 0.33E-04 Relat. res.= 0.74E-06

**** - Convergence reached in 10 iterations -

**** level 2 #call= 10 #cycle= 20 mean= 2.00 max= 2

**** level 3 #call= 20 #cycle= 40 mean= 2.00 max= 2

**** level 4 #call= 40 #cycle= 80 mean= 2.00 max= 2

**** Number of work units: 11.37 per digit of accuracy (*)

**** Solution time (Elapsed): 1.23E-01 seconds

*** (*) 1 work unit represents the cost of 1 (fine grid) residual evaluation

****LEAVING AGMG * (MEMORY RELEASED) ******************************************

Note that each output line issued by the package starts with **** .

AGMG first indicates the size of the matrix and the number of nonzero entries. One then
enters the setup phase, and the name of the coarsening algorithm is recalled, together with
the basic parameters used. Note that these parameters need not be defined by the user:
AGMG always use default values. These and some others, however, can be changed by
expert users, see Section 8.

The quality threshold is the threshold used to accept or not a tentative aggregate when ap-
plying the coarsening algorithms from [5, 8]; BlockD indicates that the algorithm from [5]
is used (quality for block diagonal smoother), whereas Jacobi is printed instead when the
algorithm from [8] is used (quality for Jacobi smoother). The strong diagonal dominance
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threshold is the threshold used to keep outside aggregation rows and columns that are
strongly diagonally dominant; by default, it is set automatically according to the quality
threshold as indicated in [5, 8]. The maximal number of passes and the target coarsening
factor are the two remaining parameters described in these papers. In addition, nodes hav-
ing large positive offdiagonal elements in their row or column are transferred unaggregated
to the coarse grid, and AGMG print the related threshold.

How the coarsening proceeds is then reported level by level.

To summarize setup, AGMG then reports on “complexities”. The grid complexity is the
sum over all levels of the number of variables divided by the matrix size; the operator
complexity is the complexity relative to the number of nonzero matrix entries; that is, it is
the sum over all levels of the number of nonzero entries divided by the number of nonzero
entries in the input matrix (see [7, eq. (4.1)]). The theoretical weighted complexity reflects
the cost of the preconditioner when two inner iterations are performed are each level; see [5,
page 15] (with γ = 2) for a precise definition. The effective weighted complexity corrects
the theoretical weighted complexity by taking into account that V-cycle is enforced at some
levels according to the strategy described in [7, Section 3]. This allows AGMG to better
control the complexity in cases where the coarsening is slow. In most cases, the coarsening
is fast enough and both weighted complexities will be equal, but, when they differ, only the
effective weighted complexity reflects the cost of the preconditioner as defined in AGMG.

Eventually, AGMG reports on the time elapsed during this setup phase (wall clock time).

Next one enters the solution phase. AGMG informs about the used iterative method (as
defined via the input argument nrest), the used smoother, and the number of smoothing
steps (which may also be tuned by expert users). How the convergence proceeds is then
reported iteration by iteration, with an indication of both the residual norm and the relative
residual norm (i.e., the residual norm divided by the norm of the right hand side). Note
that values reported for “Iter=0” correspond to initial values (nothing done yet). When the
iterative method is GCR, AGMG also reports on how many restarts have been performed.
When solving for several right hand sides (NRHS> 1), AGMG reports only the mean of the
relative residual norms (as defined in Section 2.3.3).

Upon completion, AGMG reports, for each intermediate level, statistics about inner iter-
ations; “#call” is the number of times one entered this level; “#cycle” is the cumulative
number of inner iterations; “mean” and “max” are, respectively, the average and the max-
imal number of inner iteration performed on each call. If V-cycle formulation is enforced
at some level (see [7, Section 3]), one will have #cycle=#call and mean=max=1.

Finally, the cost of this solution phase is reported, in term of “work units”, one work unit
being number of floating point operations needed for one residual evaluation (at top level:
computation of b−Ax for some b , x). AGMG reports the number of needed work units
per digit of accuracy; that is, how many digit of accuracy have been gained is computed
as d = log10(∥r0∥/∥rf∥) (where r0 and rf are respectively the initial and final residual
vectors), and the total number of work units for the solution phase is divided by d to get
the mean work needed per digit of accuracy. The code also reports the elapsed time (wall
clock).
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3 Multithread version

Professional version only

From the user viewpoint, there is no difference between calling the sequential and multi-
thread versions.

Drivers, auxiliary functions, naming convention and input arguments are thus exactly as
described in the previous section.

Which version is used (sequential or multithread) is determined by the object file the
application program is linked with: those with name containing seqmth provide both the
sequential and the multithread version, those without provide only the purely sequential
version.

The number of used threads can be specified by setting the internal parameter nthreads
as indicated in Section 2.1.3. If nthreads is set to 1, AGMG switches back to the purely
sequential version. If nthreads≤ 0 (default), the number of threads will be automatically
selected (the result depends on the system, the OpenMP implementation, and, if defined,
the contents of the OMP NUM THREADS environment variable).

Note that the variable nthreads is only significant when a setup has to be done, that is,
when ijob= 0, 1, 10, 100, 101 or 110. For other values of ijob, AGMG will use the same
number of threads as for the previous setup regardless the value of nthreads.

If the input argument iprint is set to a positive number, AGMG will report in the first
output lines about the number of threads actually used except if nthreads= 1 (thus
confirming that one has correctly linked with the multithread version, since otherwise
nothing is printed).

With the multithread version, the status variable may take two additional values (status=
13 or status= 14), which correspond to failures that have been so far never met (thus
a theoretical possibility), where a computer system spawns a given number of threads at
setup time, but refuses later on to spawn the same number, preventing AGMG to access
the related memory.

status Meaning
13 Previous setup cannot be cleaned because the system failed to spawn

the same number of threads.
14 Previous setup cannot be used because the system failed to spawn

the same number of threads.
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4 MPI version

Professional version only

We assume that the previous section about the sequential version has been carefully read.
Many features are indeed common between both versions, such as most input and output
arguments, and the meaning of output lines. This information will not be repeated here,
where the focus is on the specific features of the MPI version.

We also assume that the reader is somewhat familiar with the MPI standard.

To work, the MPI version needs that several instances of the application program have been
launched in parallel and have initialized a MPI framework, with a valid communicator.
Moreover, the MPI implementation of AGMG assumes that a partitioning of the rows of
the system matrix has been done in the calling program before calling AGMG. (Thus, if
the matrix has been generated sequentially, some partitioning tool like METIS [3] should
be called beforehand.)

Basically, the AGMG drivers requires then that each processors or MPI rank, referred to
here as “tasks”, transmits as input argument the rows that are “local” according to this
partitioning, as well as the corresponding part of the right hand sides vector(s), and, if
applicable, the corresponding part of the initial approximation. On output, AGMG will
deliver on each task the part of the solution vector(s) that corresponds to local rows.

Note that part of the local work is proportional to the number of nonzero entries in the
local rows, and part of it is proportional to the number of local rows. The used parti-
tioning should therefore aim at a good load balancing of both these quantities. Besides,
the algorithm scalability (with respect to the number of processors) will be best when
minimizing the sum of absolute values of offdiagonal entries connecting rows assigned to
different tasks.

There are two main drivers; AGMGPARG uses the global numbering of the unknowns and
is the easiest to use; AGMGPAR avoids any reference to a global numbering at the price of
some complications, and is reserved to expert users. (It is mainly maintained for backward
compatibility reasons, as it was the only available driver with early versions of AGMG.)

4.1 Calling AGMGPARG

Fortran Syntax:

call dagmgparg (n , a , ja , ia , f , x , ijob , iprint , nrest , maxit , tol , MPI_COMM )

C/C++ Syntax 4:

dagmgparg_(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ) ;

or
DAGMGPARG(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ) ;

4See footnote page 7.
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Arguments:

n: INPUT integer
a: INPUT double precision (array/pointer)

ja: INPUT integer (array/pointer)
ia: INPUT integer (array/pointer)
f: IN/OUT double precision (array/pointer)
x: IN/OUT double precision (array/pointer)

ijob: INPUT integer
iprint: INPUT integer
nrest: INPUT integer
maxit: INPUT integer

tol: INPUT double precision
MPI COMM: INPUT integer

This driver assumes that a global numbering of the unknowns has been set up in the calling
program. This global numbering must satisfy the two following requirements.

1. The local rows in every task form a block of consecutive rows in the global matrix.

2. The global numbering is consistent with the MPI rank ordering: local rows in task
with rank 0 form the first block of rows, local rows in task with rank 1 the next one,
etc.

Then, on each task, the argument n is the number of local rows and the arrays a , ja , ia
contain the submatrix corresponding to these local rows. Note that they should contain
the whole rows, regardless whether column indices point to local or non local rows.
(Formally, the matrix that is input on each task is thus a rectangular matrix.)

Long (8 bytes/64 bits) integer as input argument.
An alternative driver is provided for the case where all the integer arguments are or type
long (8 bytes/64 bits) in the calling program.

Fortran Syntax:

call dagmgparg8 (n , a , ja , ia , f , x , ijob , iprint , nrest , maxit , tol , MPI_COMM )

C/C++ Syntax 5:

dagmgparg8_(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ) ;

or
DAGMGPARG8(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ) ;

5See footnote page 7.
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4.1.1 Matrix format

Because the MPI version of AGMG is row oriented, neither the CSC format nor the
symmetric storage option is available. The default format is CSR, but the COO format
can be activated in a similar way as in the sequential case (see Section 4.3 below). It is
also possible to specify that one uses 0-based indexing. Note that, as in the sequential
case, AGMG works automatically in assembly mode when duplicated entries appear in the
input list (see Section 2.1.2).

If COOformat> 0 : COO (Coordinate) format
This format is the easier to use: nonzero matrix entries (numerical values) are stored in
a , whereas ja and ia carry the corresponding column and row indices, respectively. The
number of nonzero entries to process has to be specified before calling the main driver
via the parameter nnzinput (the threes arrays a , ja and ia must have length at least
nnzinput). The global numbering should be used for both row and column
indices, and the user should make sure that on every task all input row indices
correspond to local rows. (Otherwise AGMG will not work properly.)
Remark 1: AGMG returns to the main program with a fatal error message if COOformat> 0
while nnzinput has not been set to a positive integer.
Remark 2: the format is non-unique; entries may appear in any order.

Default: CSR (Compressed Sparse Row) format
With this format, nonzero matrix entries (numerical values) are stored row-wise in a ,
whereas ja carries the corresponding column indices; entries in ia indicate then where
every row starts. A slight complication occurs because, on each task, only local rows are
to be input, hence it would be a waste of resources to the define the pointer array ia for
every global row. Therefore, the assumed length of ia is only n+1 (regardless the global
number of unknowns), and ia(1) should point to the beginning of the first local row in a

and ja, ia(2) to the beginning of the next one, etc. However, regarding column indices
in ja, the global numbering should be used. Formally, it amounts to use on each task
the CSR format for the corresponding rectangular input matrix after having converted the
(global) row indices to 1, . . . , n (leaving column indices unchanged). As in the sequential
case, ia(n+1) must be defined in such a way that the last valid entry in arrays a and ja

correspond to index k =ia(n+1)-1.
Remark 1: (for C users) the above description matches Fortran convention; in C/C++
programs, ia(i) is accessed as ia[i-1] and ia(n+1) as ia[n]; see further below for using
AGMG with 0-based indexing according to C/C++ conventions.
Remark 2: the format is non-unique; entries in each row may appear in any order.

If ZeroBaseIndex> 0 : Use 0-based indexing (for whatever format)
By default, AGMG uses 1-based indexing; that is, indexing of arrays start at 1 and row
& column indices range from 1 to n. This corresponds to Fortran conventions. By setting
ZeroBaseIndex to positive, 0-based indexing is used instead, according to C/C++ con-
ventions. That is, indices stored in ja range from 0 to n-1 (all formats), as well as the row
indices stored in ia when using the COO format (COOformat> 0) . Further, when using
the CSR format (COOformat≤ 0), ia is a 0-based pointer; that is, the first entry in ia has
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to set to be set to 0 (instead of 1 if ZeroBaseIndex≤ 0) to tell AGMG that the first valid
matrix entry in a and ja is the first one in these arrays.

Example By way of illustration, consider the matrix

A =


10 −1
−2 11 −3

−4 12 −5
13

−8 −9 14


partitioned into 3 tasks. We assume that Task 0 receives rows 1 & 2, Task 1 rows 3 & 4,
and Task 2 row 5 (which is consistent with the requirements stated above).

This yields (for instance, as both formats are non-unique):

COO CSR

Task 0 (n = 2)
a =

[
10.0 −1.0 −2.0 11.0 −3.0

]
a =

[
10.0 −1.0 −2.0 11.0 −3.0

]
ja =

[
1 4 1 2 4

]
ja =

[
1 4 1 2 4

]
ia =

[
1 1 2 2 2

]
ia =

[
1 3 6

]
Task 1 (n = 2)

a =
[
−4.0 12.0 −5.0 13.0

]
a =

[
−4.0 12.0 −5.0 13.0

]
ja =

[
2 3 5 4

]
ja =

[
2 3 5 4

]
ia =

[
3 3 3 4

]
ia =

[
1 4 5

]
Task 2 (n = 1)

a =
[
14.0 −9.0 −8.0

]
a =

[
14.0 −9.0 −8.0

]
ja =

[
5 3 2

]
ja =

[
5 3 2

]
ia =

[
5 5 5

]
ia =

[
1 4

]
4.1.2 Other input arguments

The arguments f and x have the same meaning as in the sequential case, except that each
task needs to receive and will return only the portion of these vectors corresponding to
local rows.

Regarding the arguments ijob , iprint , nrest , maxit and tol, they have exactly the
same meaning as in the sequential case; see Section 2.1.3. The only difference, already
mentioned there, is that with the MPI version it is not permitted to transpose the input
matrix. Hence ijob=100,101,102,110,112 are forbidden.

Finally, the new input argument MPI COMM has to contain the relevant MPI communicator.
(Most often, this will be MPI COMM WORLD.)
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Important remark: whereas ijob , nrest , maxit , tol and MPI COMM should be as-
signed the same value on all tasks, iprint may be rank dependent. In fact, it is
advised to use this possibility to separate the output generated by the different tasks. In
case of massive parallelism, it is even strongly advised against using positive iprint on
more than just a few tasks. (In general, setting iprint to positive only for the Task with
rank 0 provides enough information.)

4.2 Calling AGMGPAR

Fortran Syntax:

call dagmgpar (n , a , ja , ia , f , x , ijob , iprint , nrest , maxit , tol , MPI_COMM ,
&

listrank , ifirstlistrank )

C/C++ Syntax 6:

dagmg_(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ,
listrank ,&ifirstlistrank ) ;

or
DAGMGPAR(&n , a , ja , ia , f , x ,&ijob ,&iprint ,&nrest ,&maxit ,&tol ,&MPI_COMM ,

listrank ,&ifirstlistrank ) ;

New arguments (see Section 4.1 for the other ones):

listrank: INPUT integer (array/pointer)
ifirstlistrank: INPUT integer

This driver does not refer to any global ordering of the unknowns. Instead, one has to
define on each task some Local ordering of the unknowns, such that local rows (and
thus local variables) have numbers 1, . . . , n , while nonlocal variable are given arbitrary
indices larger than n (see below).

Nonlocal connections. Offdiagonal entries present in the local rows but connecting
with nonlocal variables are to be referenced in the usual way; however, the corresponding
column indices must be larger than n. The matrix supplied to AGMGPAR is thus formally
a rectangular matrix with n rows, and an entry Aij (with 1 ≤ i ≤ n) corresponds to a local
connection if j ≤ n and to an external connection if j > n .

Important restriction. The global matrix must be structurally symmetric
with respect to nonlocal connections. That is, if Aij corresponds to an external
connection, the local row corresponding to j , whatever the task to which it is assigned,
should also contain an offdiagonal entry (with, possibly, a numerical value equal to zero)
referencing (an external variable corresponding to) i .

Consistency of local orderings. Besides the condition that they are larger than
n, indices of nonlocal variable may be chosen arbitrarily, providing that their ordering is

6See footnote page 7.

29



consistent with the local ordering on their “home” task (the task to which the corresponding
row is assigned). That is, if Aij and Akl are both present and such that j , l > n , and if
further j and l have same home task (as specified in listrank, see below), then one should
have j < l if and only if, on their home task, the variable corresponding to j has lower
index than the variable corresponding to l .

These constraints on the input matrix should not be difficult to meet in practice. Thanks to
them, AGMGmay set up the parallel solution process with minimal additional information.
In fact, AGMG has only to know what is the rank of the “home” task of each referenced
non-local variable. This information is supplied in input vector listrank.

Let jmin and jmax be, respectively, the smallest and the largest index of a non-local variable
referenced in ja (n < jmin ≤ jmax). Only entries listrank(j) for jmin ≤ j ≤ jmax will be
referenced and need to be defined. If j is effectively present in ja, listrank(j) should
be equal to the rank of the “home” task of (the row corresponding to) j ; otherwise,
listrank(j) should be equal to an arbitrary negative integer.

listrank is declared in AGMGPAR as listrank(ifirstlistrank:*).
Setting ifirstlistrank= jmin or ifirstlistrank=n+1 allows to save on memory, since
listrank(i) is never referenced for i < jmin (hence in particular for i ≤n ).

Example

By way of illustration, consider the same matrix as in the previous section partitioned into
3 tasks, Task 0 receiving rows 1 & 2, Task 1 rows 3 & 4, and Task 2 row 5. Firstly, one has
to add a few entries into the structure to enforce the structural symmetry with respect to
non-local connections:

A =


10 −1
−2 11 −3

−4 12 −5
13

−8 −9 14

 →


10 −1
−2 11 0 −3 0

−4 12 −5
0 0 13

−8 −9 14

 .
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Then A is given (non uniquely) by the following variables and vectors.

Task 0
n = 2
a =

[
10.0 −1.0 −2.0 11.0 −3.0 0.0 0.0

]
ja =

[
1 4 1 2 4 3 5

]
ia =

[
1 3 8

]
listrank =

[
∗ ∗ 1 1 2

]
Task 1

n = 2
a =

[
−4.0 12.0 −5.0 13.0 0.0 0.0

]
ja =

[
7 1 5 2 6 7

]
ia =

[
1 4 7

]
listrank =

[
∗ ∗ ∗ ∗ 2 0 0

]
Task 2

n = 1
a =

[
14.0 −9.0 −8.0

]
ja =

[
1 5 3

]
ia =

[
1 4

]
listrank =

[
∗ ∗ 0 −1 1

]
Note that these vectors, in particular the numbering of nonlocal variables, were not con-
structed in a logical way, but rather to illustrate the flexibility and also the requirements
of the format. One sees for instance with Task 2 that the numbering of nonlocal variables
may be quite arbitrary as long as “holes” in listrank are filled with negative numbers.

Common error: don’t forget to initialize “holes” in listrank with negative numbers.

Other input arguments: See Section 4.1.2.

Alternative driver: dagmgpar8 should be called instead if all the integer arguments are
or type long (8 bytes/64 bits) in the calling program.

4.3 Changing internal parameters

For whatever driver, internal parameters can be changed in the same way as for the se-
quential version. The call is as follows.

Fortran Syntax:

call dagmgpar_intparam ("key" , value , instance )
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C/C++ Syntax 7:

dagmgpar_intparamC ("key" , value , instance ) ;

Arguments:

"key": INPUT string
value: INPUT integer

instance: INPUT integer

The usage and the list of adjustable parameters is as indicated at the beginning of Sec-
tion 2.1 for the sequential case: only the name of the function differs. The only peculiarity,
already mentioned, is that CSC format and symmetric storage options are deactivated.
Hence trying to change the corresponding parameters (CSCformat or SYMstorage) will
have no effect besides the printing of a warning message.

In particular the COO format mentioned above is activated by setting the parameter
COOformat to positive and setting the parameter nnzinput to the number of relevant
entries in arrays a , ja and ia.

Long (8 bytes/64 bits) integer as input argument.
If the input integers arguments value and instance are of type long (8 bytes/64 bits),
Fortran users should use the alternative function:

call dagmgpar8_intparam ("key" , value , instance )

No alternative function is provided for C/C++ users, but they can easily edit the decla-
ration in the function dagmgpar intparamC in the provided source file so as to match the
type of integer used when calling the function (other declarations should not be modified).

4.4 Solving at once for multiple right hand sides

In the MPI case as well, AGMG can solve at once for more than one right hand side,
by setting (with a call to the auxiliary function as explained above), NRHS to the number
of right hand sides and MajOrd to either positive or negative, according to the type of
ordering used in arguments f and x (major row or major column ordering, respectively).
We refer to Section 2.2 for details, as whatever is written there applies to the MPI version
as well.

4.5 Output arguments and error flags

All what is written in Section 2.3 applies to the MPI version as well, except that the naming
of the functions to access the value of status and iter is modified: one has to exchange

7The name is here dagmg intparamC for all compilers and OS because this function is specific to the
C/C++ version and supplied in a separated C source file (dagmgpar intparamC.c).
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dagmg for dagmgpar (as for the auxiliary functions to change internal parameters). Hence
to access status the call is:

Fortran Syntax:

call dagmgpar_status ( status , instance )

C/C++ Syntax :

dagmgpar_status_(&status ,&instance ) ;

or
DAGMGPAR_STATUS(&status ,&instance ) ;

Or, if long (8 bytes/64 bits) integers are used in the calling program:

Fortran Syntax:

call dagmgpar8_status ( status , instance )

C/C++ Syntax :

dagmgpar8_status_(&status ,&instance ) ;

or
DAGMGPAR8_STATUS(&status ,&instance ) ;

See Section 2.3.1 for the possible values of status and their meanings.
(As in the sequential case, instance is ignored by default and is only meaningful in the
special several instances mode described in Section 6.)

Similarly, the number of iterations performed during the last call to the MPI version of
AGMG is accessed with:

Fortran Syntax:

call dagmgpar_iter (iter , instance )

C/C++ Syntax :

dagmgpar_iter_(&iter ,&instance ) ;

or
DAGMGPAR_ITER(&iter ,&instance ) ;

Or, if long (8 bytes/64 bits) integers are used in the calling program:

Fortran Syntax:

call dagmgpar8_iter (iter , instance )

C/C++ Syntax :

dagmgpar8_iter_(&iter ,&instance ) ;

or
DAGMGPAR8_ITER(&iter ,&instance ) ;
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Finally the argument f is also used to return information to the calling program in case
where ijob=0,2,3,10,12,202 or 212, exactly in the same way as in the sequential case, see
Section 2.3.3. Note that this information is returned on each task. (Since all returned
quantities are global, the same contents is returned on all MPI ranks.)
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4.6 Example

The source file of the following example is provided with the package. The matrix corre-
sponding to the five-point approximation of the Laplacian on the unit square is partitioned
according a strip partitioning of the domain, with internal boundaries parallel to the x di-
rection. Note that this strip partitioning is not optimal and has been chosen for the sake
of simplicity.

If IRANK> 0 , nodes at the bottom line have a non-local connection with Task IRANK-1 , and
if IRANK<NPROC−1 , nodes at the top line have a non-local connection with Task IRANK+1 .
However, using the driver dagmgparg, it is not needed to provide such information to
AGMG. All what is needed is to have the correct global indices, which each task deduces
in the program below by evaluating the total number of unknowns in all tasks with lower
rank (variable nprev).

Note also that each task will print its output in a different file. This is recommended.

Listing 3: source code of MPI Example (Fortran 90)

program example_par

!
! So l v e s the d i s c r e t e Laplac ian on the un i t square by s imple c a l l to AGMG.
! The r i gh t=hand=s i d e i s such t ha t the exac t s o l u t i o n i s the vec t o r o f a l l 1 .
! Uses a s t r i p p a r t i t i o n i n g o f the domain , wi th i n t e r n a l boundar ies p a r a l l e l
! to the x d i r e c t i o n ( not optimal , but makes the program ea s i e r to read ) .
!

implicit none

include ’mpif.h’

real ( kind (0d0 ) ) , allocatable : : a ( : ) , f ( : ) , x ( : )
integer , allocatable : : ja ( : ) , ia ( : )
integer : : n , maxit , iprint , nhinv , NPROC , IRANK , mx , my , nprev , nnz , ierr , i
real ( kind (0d0 ) ) : : tol

character*10 filename

!
! s e t i n v e r s e o f the mesh s i z e ( f e e l f r e e to change )

nhinv=1000
!
! maximal number o f i t e r a t i o n s

maxit=50
!
! t o l e r anc e on r e l a t i v e r e s i d u a l norm

tol=1.e=6
!
! i n i t i a l i z e MPI
!

call MPI_INIT ( ierr )
call MPI_COMM_SIZE ( MPI_COMM_WORLD , NPROC , ierr )
call MPI_COMM_RANK ( MPI_COMM_WORLD , IRANK , ierr )
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!
! un i t number f o r output messages ( a l t e r n a t i v e : i p r i n t=10+IRANK)

iprint=10
filename (1 :8)= ’res.out_’

write ( filename ( 9 : 1 0 ) , ’(i2.2)’ ) IRANK ! p roces sor dependent
open ( iprint , file=filename , form=’formatted’ )

!
! c a l c u l a t e the l o c a l g r i d s i z e and the t o t a l number o f unknowns
! in prev ious t a s k wi th lower rank
! ( adding 1 , t h i s g i v e s the g l o b a l index o f the f i r s t l o c a l unknown)
!

mx=nhinv=1
if ( IRANK < mod ( nhinv=1,NPROC ) ) then

my=(nhinv=1)/NPROC+1
n=mx*my
nprev=mx*my*IRANK

else

my=(nhinv=1)/NPROC
n=mx*my
nprev=mx *(my*IRANK+ mod ( nhinv=1,NPROC ) )

end if

!
! genera te the l o c a l matrix in COO format ( us ing g l o b a l i n d i c e s )
!
! f i r s t a l l o c a t e the v e c t o r s wi th co r r e c t s i z e

n=mx*my
allocate (a (5*n ) , ja (5*n ) , ia (5*n ) , f (n ) , x (n ) )
call uni2dstrip (mx , my , f , a , ja , ia , IRANK , NPROC , nprev , nnz )

!
! c a l l a u x i l i a r y func t i on to t e l l AGMG tha t COO format i s used

call dagmgpar_intparam ("COOformat" , 1 , 0 )
! c a l l a u x i l i a r y func t i on to inform AGMG about the number o f e n t i r e s in
! arrays a , ja and ia

call dagmgpar_intparam ("nnzinput" ,nnz , 0 )
! c a l l AGMG
! argument 5 ( i j o b ) i s 0 because we want a complete s o l v e
! argument 7 ( nre s t ) i s 1 because we want to use f l e x i b l e CG
! ( the matrix i s symmetric p o s i t i v e d e f i n i t e )
! b e f o r e c a l l i n g , f i x the number o f th reads to 2 per MPI rank ;
! t h i s w i l l be s i g n i f i c a n t on ly when l i k i n g wi th the hybr id ve r s i on
! o f AGMG

call dagmgpar_intparam ("nthreads" , 2 , 0 )
! f i n a l l y , observe t ha t we c a l l the d r i v e r f o r g l o b a l column and row
! i n d i c e s in ja and ia ( f o r t h i s l a t t e r , when CCO format i s used )

call dagmgparg (n , a , ja , ia , f , x , 0 , iprint , 1 , maxit , tol , MPI_COMM_WORLD )
!
! d i s p l a y on screen the output i n f o re turned by AGMG in f ( )
! a l l ranks have the same info , but on ly one has to p r i n t i t
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if ( irank . eq . 0 ) then

print ’()’

print ’("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣AGMG␣status␣:",i5)’ , int (f ( 1 ) )
print ’("Number␣of␣performed␣iterations␣:",i5)’ , int (f ( 2 ) )
print ’("␣␣␣␣␣␣␣␣Relative␣residual␣norm␣:",1pe9.2)’ , f (3 )
print ’("␣␣␣␣␣␣␣␣␣␣␣Convergence␣history␣:␣#iter␣␣␣Residual␣Norm")’

print ’("␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣",i5,1pe16.5)’ &
,( i , f(4+i ) , i=0,int (f ( 2 ) ) )

endif

!
! uncomment the f o l l ow i n g to wr i t e s o l u t i o n on d i s k f o r check ing
!
! f i l ename (1:8)= ’ s o l . out ’
! wr i t e ( f i l ename (9 : 10 ) , ’ ( i 2 . 2 ) ’ ) IRANK ! proces sor dependent
! open (11 , f i l e=f i lename , form=’ formatted ’ )
! wr i t e (11 , ’ ( e22 . 15 ) ’ ) x ( 1 : n)
! c l o s e (11)
!

call MPI_FINALIZE ( ierr )
deallocate (a , ja , ia , f , x )

!
end program example_par

!======================================================================
subroutine uni2dstrip (mx , my , f , a , ja , ia , IRANK , NPROC , nprev , nnz )

!
! F i l l a matrix in COO format corresponding to a cons tant c o e f f i c i e n t
! f i v e=po in t s t e n c i l on a r e c t angu l a r g r i d
! Bottom boundary i s an i n t e r n a l boundary i f IRANK > 0 , and
! top boundary i s an i n t e r n a l boundary i f IRANK < NPROC=1
! Le f t and r i g h t boundar ies are always r e a l boundar ies

implicit none

real ( kind (0d0 ) ) : : f (* ) , a (* )
integer : : mx , my , ia (* ) , ja (* ) , nprev , nnz
integer : : IRANK , NPROC , k , l , i , j
real ( kind (0d0 ) ) , parameter : : zero=0.0d0 , cx==1.0d0 , cy==1.0d0 , cd=4.0d0
!
k=nprev
l=0
do i=1,my

do j=1,mx
k=k+1
l=l+1
a (l)=cd

ja (l)=k

ia (l)=k

f (k=nprev)=zero

if (j < mx ) then

l=l+1
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a (l)=cx

ja (l)=k+1
ia (l)=k

else

f (k=nprev)=f (k=nprev)=cx

end if

if (i < my . OR . IRANK /= NPROC=1) then

l=l+1
a (l)=cy

ja (l)=k+mx
ia (l)=k

else

f (k=nprev)=f (k=nprev)=cy ! r e a l boundary
end if

if (j > 1) then

l=l+1
a (l)=cx

ja (l)=k=1
ia (l)=k

else

f (k=nprev)=f (k=nprev)=cx

end if

if (i > 1 . OR . IRANK /= 0) then

l=l+1
a (l)=cy

ja (l)=k=mx

ia (l)=k

else

f (k=nprev)=f (k=nprev)=cy ! r e a l boundary
end if

end do

end do

nnz=l
!
return

end subroutine uni2dstrip
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4.7 Printed output

Running the above example with 4 tasks, Task 0 produces the following output.

0*ENTERING AGMG *************************************************************

**** Global number of unknowns: 998001

0* Number of local rows: 249750

**** Global number of nonzeros: 4986009 (per row: 5.00)

0* Nonzeros in local rows: 1247251 (per row: 4.99)

0*SETUP: Coarsening by multiple pairwise aggregation

**** Rmk: Setup performed assuming the matrix symmetric

**** Quality threshold (BlockD): 10.00 ; Strong diag. dom. trs: 1.22

**** Maximal number of passes: 3 ; Target coarsening factor: 8.00

**** Threshold for rows with large pos. offdiag.: 0.45

0* Level: 2

**** Global number of variables: 124563 (reduction ratio: 8.01)

0* Number of local rows: 31249 (reduction ratio: 7.99)

**** Global number of nonzeros: 622693 (per row: 5.0; red. ratio: 8.01)

0* Nonzeros in local rows: 155996 (per row: 5.0; red. ratio: 8.00)

0* Level: 3

**** Global number of variables: 15704 (reduction ratio: 7.93)

0* Number of local rows: 3860 (reduction ratio: 8.10)

**** Global number of nonzeros: 79406 (per row: 5.1; red. ratio: 7.84)

0* Nonzeros in local rows: 19390 (per row: 5.0; red. ratio: 8.05)

0* Level: 4

**** Global number of variables: 1963 (reduction ratio: 8.00)

0* Number of local rows: 465 (reduction ratio: 8.30)

**** Global number of nonzeros: 10035 (per row: 5.1; red. ratio: 7.91)

0* Nonzeros in local rows: 2294 (per row: 4.9; red. ratio: 8.45)

**** Global grid complexity: 1.14

**** Global Operator complexity: 1.14

0* Local grid complexity: 1.14

0* Local Operator complexity: 1.14

**** Theoretical Weighted complexity: 1.33 (K-cycle at each level)

**** Effective Weighted complexity: 1.33 (V-cycle enforced where needed)

0* Setup time (Elapsed): 1.78E-01 seconds

39



0*SOLUTION: flexible conjugate gradient iterations (FCG(1))

**** AMG preconditioner with Gauss-Seidel smoothing

**** ( 1 pre- and 1 post- relaxations )

**** Iter= 0 Resid= 0.63E+02 Relat. res.= 0.10E+01

**** Iter= 1 Resid= 0.20E+02 Relat. res.= 0.32E+00

**** Iter= 2 Resid= 0.54E+01 Relat. res.= 0.86E-01

**** Iter= 3 Resid= 0.20E+01 Relat. res.= 0.31E-01

**** Iter= 4 Resid= 0.54E+00 Relat. res.= 0.85E-02

**** Iter= 5 Resid= 0.30E+00 Relat. res.= 0.47E-02

**** Iter= 6 Resid= 0.84E-01 Relat. res.= 0.13E-02

**** Iter= 7 Resid= 0.39E-01 Relat. res.= 0.62E-03

**** Iter= 8 Resid= 0.11E-01 Relat. res.= 0.18E-03

**** Iter= 9 Resid= 0.40E-02 Relat. res.= 0.63E-04

**** Iter= 10 Resid= 0.20E-02 Relat. res.= 0.31E-04

**** Iter= 11 Resid= 0.77E-03 Relat. res.= 0.12E-04

**** Iter= 12 Resid= 0.28E-03 Relat. res.= 0.45E-05

**** Iter= 13 Resid= 0.11E-03 Relat. res.= 0.18E-05

**** Iter= 14 Resid= 0.41E-04 Relat. res.= 0.64E-06

**** - Convergence reached in 14 iterations -

**** level 2 #call= 14 #cycle= 28 mean= 2.00 max= 2

**** level 3 #call= 28 #cycle= 56 mean= 2.00 max= 2

**** level 4 #call= 56 #cycle= 84 mean= 1.50 max= 4

0* Number of work units: 11.51 per digit of accuracy (*)

0* Solution time (Elapsed): 3.15E-01 seconds

0 (*) 1 work unit represents the cost of 1 (fine grid) residual evaluation

0*LEAVING AGMG * (MEMORY RELEASED) ******************************************

Most comments made in Section 2.5 apply here as well. The main difference is that, for
some items, both a local and a global quantity are now given. All output lines starting
with **** correspond to global information and are printed only by the Task with rank 0.
Other lines starts with xxx*, where “xxx” is the task rank. They are printed by each task,
based on local computation. For instance, reported number of work units for the solution
phase is based on local the number of local floating point operations relative to the local
cost of one residual evaluation. If one has about the same number on each task, it means
that the initial load balancing (whether good or bad) has been well preserved in AGMG.
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5 Hybrid version

Professional version only

The hybrid version adds multithreading on top of the MPI version; that is, each MPI rank
will run in multithread mode.

From the user viewpoint, there is no difference between calling the MPI and hybrid versions.

Drivers, auxiliary functions, naming convention and input arguments are thus exactly as
described in the previous section.

Which version is used (MPI or hybrid) is determined by object file the application program
is linked with: those with name containing mpihyb provide the hybrid version, those
containing mpi provide the pure MPI version.

The number of used threads can be specified by setting the internal parameter nthreads
as indicated in Section 4.3. This is highly recommended, as system defaults in general
ignore how many MPI tasks (or MPI ranks) are running concurrently on the compute
unit. Moreover, every task has to use the same number of threads, otherwise
AGMG cannot work properly. The safest way to enforce this is to fix this number of
threads via the variable nthreads by calling the auxiliary function dagmgpar intparam

(Fortran) or dagmgpar intparamC (C/C++).

In the remaining of this section we repeat the information given in Section 3 about the
multithread version, as it applies to the hybrid version as well.

If nthreads is set to 1, AGMG switches back to the pure MPI version, whereas, if
nthreads≤ 0 (default), the number of threads will be automatically selected
(the result depends on the system, the OpenMP implementation, and, if defined, the con-
tents of the OMP NUM THREADS environment variable).

Note that the variable nthreads is only significant when a setup has to be done, that is,
when ijob= 0, 1, 10, 100, 101 or 110. For other values of ijob, AGMG will use the same
number of threads as for the previous setup regardless the value of nthreads.

If the input argument iprint is set to a positive number, AGMG will report in the first
output lines about the number of threads actually used except if nthreads= 1 (thus
confirming that one has correctly linked with the hybrid version, since otherwise nothing
is printed).

With the hybrid version, the status variable may take two additional values (status= 13
or status= 14), which correspond to failures that have been so far never met (thus a
theoretical possibility), where a computer system spawns a given number of threads at
setup time, but refuses later on to spawn the same number, preventing AGMG to access
the related memory. See the end of Section 3 for the table of values and their exact
meaning.
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6 Several instances mode

In some contexts, it is interesting to hold simultaneously in memory several instances of
the AGMG preconditioner, related to different matrices (with possibly different sizes). For
example, when a preconditioner for a matrix in block form is defined considering separately
the different blocks, and when one would like to use AGMG for several of these blocks.
The several instances mode has been designed for this purpose.

One enters this mode by setting the internal parameter MaxInstance to a positive value
equal to the maximl number of instances one would like to hold simultaneously in memory.
Except for Octave and Matlab versions (see the provided help for these), this is done
by calling the auxiliary function dagmg intparam or dagmg intparamC as explained in
Section 2.1.1, with first argument set to "MaxInstance" (case sensitive!), second argument
set to the desired value and third argument set to zero.8

Once in several instances mode, all calls to AGMG drivers should be associated with a
positive instance number instance not larger than MaxInstance. This is done by setting
the ijob argument to any nonnegative vale listed in Table 1 plus 1000×instance. Then,
ijob=1001 means setup for instance 1, ijob=3202 means solve for instance 3, ijob=2099
means memory release for instance 2, etc.

In several instances mode, ijob=-1 is still allowed and means erase the setup and release
internal memory of all instances, being thus a shortcut for successive calls with ijob=1099,
ijob=2099, etc.

One exits the several instances mode by resetting MaxInstance to 0. It is recommended
to always reset MaxInstance to 0 after the last call to AGMG because the several
instances mode requires a small amount of additional memory that is only released when
explicitly exiting the mode. (In fact, this amount of memory is practically insignificant,
but its presence will induce an undesirable memory leak detection if the software is run
under the control of a memory checking application.)

Note that the several instances mode is not yet implemented for the MPI and Hybrid ver-
sions of AGMG.

Rules, restrictions and remarks

� MaxInstance cannot not be changed while a setup is held in memory. This, in
particular, applies when one is willing to enter the several instances mode by setting
MaxInstance to positive: if a previous setup is still held in memory, an error message
will be issued and one will not enter the mode. Similarly, it is needed to erase the
setup of all instances before exiting the mode by resetting MaxInstance to 0.

� Thus, in several instances mode, admitted values of ijob are -1 (erase all setups)
plus those such that

8The third argument is always ignored when the first argument is "MaxInstance" ; note also that
function names change for complex matrices, see Section 9).
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instance= ⌊ijob/1000⌋ is a valid instance number (> 0 and at most MaxInstance)
and
ijb = ijob mod 1000 is one of the nonnegative value listed in Table 1.

Then, AGMG will perform the action associated with ijb on the indicated instance.

Note that, in particular, in several instances mode, nonnegative values of ijob should
be at least 1000.

� When compiled with the OpenMP flag, the purely sequential version of AGMG is
threadsafe in several instances mode. It means that calls to AGMG drivers can be
done safely in parallel as soon as each of these calls is associated with a distinct
instance number. 9

Beware that only the purely sequential code is threadsafe. The multithread version
of AGMG is not, even though it would run sequentially by setting the nthreads

parameter to 1. Thus, users have to choose between parallelism inside AGMG and
parallelism at upper level with independent calls to AGMG executed in parallel.

� Regarding the multithread version, for technical reasons, AGMG has to fix the max-
imum number of threads for any subsequent call when the driver is called for the
first time in several instances mode. This is done based on the available information
associated with the current value of nthreads for each instance (see next paragraph
for instance dependent adjustable parameters). If one wants to use different num-
bers of threads for different instances, it is therefore highly recommended to set the
nthreads parameter for each instance before any call to AGMG driver.

Internal parameters

� When entering the several instance mode, the current values of adjustable parameters
are copied to the private space of each instance.

� Once in several instances mode, the third argument instance to dagmg intparam

and dagmg intparamC can be set to a positive number not larger than MaxInstance;
then only that instance will be concerned by the parameter update. On the other
hand, if this third argument is nonpositive, the parameter update will apply to all
instances. Finally, if instance is set to a positive number larger than MaxInstance,
an error message will be issued and no action will be performed.

� When exiting the several instances mode, the current values for adjustable parameters
are retrieved from those of instance number 1.

9Note that, for obvious reasons, the setting of MaxInstance that makes AGMG enter the several
instance mode should either be performed before entering the parallel loop or region or followed by a
BARRIER instruction.
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Integer output arguments

In several instances mode, when calling the function dagmg status or dagmg iter, it is
highly recommended to set the second argument to the number of the instance one wants to
retrieve information from. For other values of this second argument, the function will return
the last registered value of the associated internal parameter, which might be ambiguous.

7 Solving singular systems

Singular but compatible systems can be solved by AGMG without needing to tell the soft-
ware that the provided linear system is singular. However, this usage should be considered
with care and a few limitations apply. Usually, AGMG works smoothly when the dimension
of the null space is at most 1 (see below for larger dimensions): if the matrix at coarsest
level is also singular, AGMG will detect this and prevent instabilities associated with the
direct inversion of a singular matrix.

However, this detection is heuristic, hence may fail in some cases. When AGMG detects a
singular matrix at coarsest level, this is reported on the printed output, allowing the user
to check what happened. Note that nothing reported (thus no singularity detected) does
not mean that something wrong happened because it is case dependent whether or not the
singularity of the system matrix is transferred at coarsest level. If a singular coarsest grid
matrix is not properly detected, this may be associated with convergence instabilities, es-
pecially with the conjugate gradient method (nrest=1), while the computed solution may
be undesirably dominated by kernel components. Feel free to contact support@agmg.eu if
you think you are running in such a case.

When the dimension of the null space is larger than 1, the standard detection procedure
may fail because it is tailored for a coarsest grid matrix with at most 1 singular mode.
However, this is easily corrected by setting the MaxCoaKernVect internal parameter to the
null space dimension; MaxCoaKernVect is the maximal number of coarse kernel vectors
that will be searched for. If this parameter is larger than 1, when detecting a singularity
at coarsest level, AGMG will additionally report about the numbers of detected kernel
vector(s).

Eventually, any detection is prevented by setting MaxCoaKernVect to 0. This is recom-
mended if and only if AGMG reports that it treats the coarsest grid matrix as singular in
case it should not, especially if this seemingly induces convergence issues.

As alternative approach, note that AGMG can also often be efficiently applied to solve
the near singular system obtained by deleting properly row(s) and column(s) in a linear
system originally singular (and compatible). This approach is not recommended in general
with iterative solvers because the truncated system obtained in this way tends to be ill-
conditioned and hence hard to solve with iterative methods. However, it is sensible to use
this approach with AGMG because one of the features of the method in AGMG is precisely
its capability to efficiently solve ill-conditioned linear systems.
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8 Tuning AGMG parameters

List of adjustable internal parameters for tuning by expert users:
smoothtype (default:0) , percent omega (default:70)
npresmooth(1) (default:1) , npostmooth(1) (default:1)
npresmooth(2) (default:1) , npostsmooth(2) (default:1)
npass (default:2; 3 for the MPI and Hybrid version)
targetcoarsening (default:0)
qualitybound (default:0) , percent dd (default:0)
percent trspos (default:45)
percent negrcsum (default:25)
nstep (default:-1) , maxcoarsesize (default:40)
percent resi (default:20) , nlvcyc (default:0)

List of additional adjustable internal parameters for the MPI and Hybrid versions:
MAXITcoarse (default:10) , percent tolcoarse (default:45)

Short overview
smoothtype indicates which smoother is used.

If smoothtype=1, the smoother is based on Gauss-Seidel sweeps;
If smoothtype=0, the smoother is based on SOR sweeps with automatic
estimation of the relaxation parameter (often reduces to Gauss-Seidel);

If smoothtype=-1, the smoother is based on SOR sweeps with relaxation parameter
percent omega/100 (e.g., percent omega=70 ⇒ rel. param.=0.70)

Scheme used in all three cases:
pre-smoothing: Forward sweep, then Backward sweep, then Forward, etc
post-smoothing: Backward sweep, then Forward sweep, then Backward, etc.

If smoothtype=2, the smoother is ILU(0)

npresmooth(1): number of pre-smoothing steps at fine level (minimum: 0).
npostmooth(1): number of post-smoothing steps at fine level (minimum: 1).
npresmooth(2): number of pre-smoothing steps at other levels (minimum: 0).
npostmooth(2): number of post-smoothing steps at other levels (minimum: 1).

npass is the maximal number of pairwise aggregation passes for each coarsening step,
according to the algorithms in [5, 8]

targetcoarsening is the target coarsening factor (parameter τ in the main coarsening
algorithms in [5, 8]): further pairwise aggregation passes are omitted once the num-
ber of nonzero entries has been reduced by a factor of at least targetcoarsening. If
targetcoarsening≤ 0 , then the default value 2npass is used.

qualitybound is the threshold to accept or not a tentative aggregate according to the
coarsening algorithms in [5, 8]. If qualitybound≤ 0 , a default value is assigned, which
depends on npass and on whether one uses the symmetric [5] or nonsymmetric [8] version
of the algorithm.
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percent dd: the threshold to keep outside aggregation nodes where the matrix is strongly
diagonally dominant (based on mean of row and column) is the maximum between the
default value as indicated in [5, 8] and 1+percent dd/100. Setting percent dd=0 guar-
antees that one uses the default value, whereas setting percent dd to a very large integer
will ensure that no nodes will be kept outside aggregation.

percent trspos/100 is a threshold: if a row has a positive offdiagonal entry larger than
this threshold times the diagonal entry, the corresponding node is transferred unaggregated
to the coarse grid.

percent negrcsum indicates the percentage of nodes with negative mean row and column
sum that is “tolerated”. If, at some level, the actual number is beyond this threshold, to
apply the coarsening algorithm, all diagonal entries are exchanged for the corresponding
mean row and column sum (that is, the algorithm is applied to a modified matrix with
mean row and column sum enforced to be zero).

nstep is the maximum number of coarsening steps. If nstep< 0 , the coarsening is stopped
when the (local) size of the coarse grid matrix is less than or equal to maxcoarsesize·n1/3
on each task or MPI rank.

percent resi/100 is the threshold for the relative residual error in inner iterations at
intermediate levels, see Algorithm 3.2 in [7]

nlvcyc is the number of coarse levels (from bottom) on which V-cycle formulation is
enforced (Remark: K-cycle always used at first coarse level).

Tuning the MPI version

Compared with the sequential version, by default, the number of pairwise aggregation
passes npass is increased from 2 to 3. This favors more aggressive coarsening, in general
at the price of some increase of the setup time. Hence, on average, this slightly increases
the sequential time of roughly 10 %. But this turns out to be often beneficial in parallel,
because this reduces the time spent on small grids where communications are relatively
more costly and more difficult to overlap with computation. If, however, you experience
convergence difficulties, it may be wise to restore the default npass=2. On the other hand,
you may try to obtain even more aggressive coarsening by increasing also qualitybound,
after having checked effects on the convergence speed (they are application dependent).

Eventually, in the parallel case, it is worth checking how the solver works on the coarsest
grid. Increasing the size of the coarsest system may help reduce communications as long
as the coarsest solver remains efficient, which depends not only of this size, but also on
the number of processors and on the communication speed. This effect can be obtained by
adjusting the parameters nstep and/or maxcoarsesize, possibly according to the number
of processors.

Note that the coarsest grid solver is itself an iterative one for the MPI version, and its effi-
ciency may depends on both the prescribed maximum number of iterations MAXITcoarse
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and on the threshold used to stop these iterations, percent tolcoarse/100. In particular,
setting MAXITcoarse=1 works often pretty well, as it minimizes the work and the com-
munication at coarsest level without having necessarily a significant impact on the overall
convergence of the main iteration.

9 Complex version

The usage is exactly the same as the standard (real) version described in other sections,
with the following peculiarities.

� When calling the drivers and associated functions, one has to replace in whatever
name the prefix d by z; e.g., use zagmg instead of dagmg and zagmg intparamC

instead of dagmg intparamC

� The input and output arguments are the same and have same type, except the double
precision arrays a, f and x that have double complex type for the complex version.

Alternatively, one can supply as arguments double precision arrays of length twice as
large, using the convention that each double complex entry occupies two successive
positions in the corresponding double precision array, the first one indicating the
real part and the second one the imaginary part. This latter trick should be used
when the calling program is in C/C++, since there is no native support for complex
number in these languages.

� The output information returned in f is as described in Section 2.3.3, thus made of
real numbers, implying that the imaginary part of affected entries in f is set to zero.

� Symmetric storage can still be used on input, but one should pay attention that it
works only for symmetric complex matrices and not for Hermitian matrices.

� Regarding source and object files, one should link with those have prefix z instead of
d.

� To link a program simultaneously with the real and complex versions of AGMG, the
complex version of the MUMPS source file (zagmg mumps.F90) should be compiled
defining the macro “ NO COMMON PART ” 10 to skip the part of the sources that
are also present in the real version of the MUMPS source file (dagmg mumps.F90).
The complex part should also be compiled after the real one to make sure that the
needed modules from this latter can be referenced.

10Thus using the option “-D NO COMMON PART ” on Linux and macos and (most often) using the
option “/D NO COMMON PART ” on Windows.
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